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Abstract

The technique of complex scaling is a popular
way to deal with the wave equation on unboun-
ded domains. It is based on a complex coordi-
nate stretching in the time harmonic regime. In
our work we consider settings, where the usual
cartesian or radial scalings are not applicable
due to inhomogeneous exterior domains (e.g. o-
pen waveguides in non-axial directions). We
apply a scaling in normal direction. Moreover
we use in�nite elements to discretize the com-
plex scaled equation instead of truncating the
domain to bene�t from superior approximation
properties and omit an additional truncation er-
ror. We present numerical experiments to illus-
trate our results.

Keywords: wave equation, in�nite elements,
complex scaling

1 Introduction

We consider numerically solving the wave equa-
tion

c(x)2 ∆xp(t,x) =
d2

dt2
p(t,x) (1)

on Ω := R2. We are interested in settings similar
to the one sketched in Figure 1, where the wave
speed c is constant inside and outside of a set of
open waveguides respectively. More generally
we assume that there exist Ωint,Γ,Ωext ⊂ R2,
such that Ω = Ωint∪̇Γ∪̇Ωext, where Ωint is open,
bounded, and convex, Γ = ∂Ωint is smooth with
outer normal n,

Ωext = {x̂ + ξn(x̂) : ξ ∈ R>0, x̂ ∈ Γ} , (2)

such that the coordinates ξ(x) , x̂(x) are unique
for each x ∈ Ωext and

c|Ωext(x) = c̃(ξ(x)) ĉ(x̂(x)) .

Since we allow inhomogeneities which are nei-
ther radial nor parallel to the axes, the frequently
used cartesian or radial complex scalings are not
applicable in this case.
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Figure 1: Example domain, where cartesian or
spherical scalings would fail: Open waveguide
with junction.

2 Absorbing layers for the wave equa-

tion

To construct absorbing boundary layers for the
wave equation we follow the ideas presented for
example in [4]. Note that the following steps are
merely theoretical prerequisites to our method.
The numerical method itself consists of discretiz-
ing the resulting system of equations. First, we
apply a Fourier transformation. Then the tech-
nique of complex scaling is applied to the result-
ing Helmholtz equation. This technique relies on
a complex coordinate stretching γ : Ωext → C2,
which is chosen such that the outgoing solu-
tions of the Helmholtz equation on the complex
scaled domain γ (Ωext) are exponentially decay-
ing. We use normal scalings (cf. [1]), mean-
ing that the complex deformation γ(x(x̂, ξ)) :=
x(x̂, s(ξ)) for a scalar scaling function s : R>0 →
C, is only applied to the normal coordinate ξ.
The scaling function s is of the form

sω(ξ) =
q1(iω)

q2(iω)
ξ (3)

with complex polynomials q1, q2. While the de-
pendency on the frequency is advantageous for
resonance problems (cf. [3]) due to better ap-
proximation properties, it is essential for time
domain. The wrong treatment of a subset of
the present frequencies can lead to exponentially

Suggested members of the Scienti�c Committee:

D. Givoli, P. Monk, T. Hagstrom



WAVES 2019, Vienna, Austria 2

growing and therefore unstable solutions in time.
Di�erent choices of (3) are suitable for di�erent
problem settings.

The resulting complex scaled equation is sub-
sequently transformed back to time domain by
applying the according inverse Fourier transfor-
mation. Since powers of −iω are transformed to
time derivatives, we introduce a suitable set of
additional unknowns to end up with a second
order system in time again.

3 Discretization in space

To discretize the system obtained in the previ-
ous section in space, usually the �nite element
method is applied to a truncated exterior do-
main which introduces an additional error. Dif-
fering from this approach we use in�nite ele-
ments which are based on Hardy space in�nite
elements (cf. [2]) instead. To this end, we use
the exterior coordinates ξ, x̂ and a tensor prod-
uct ansatz space (cf. Figure 2). The �rst part

Ωint ΩextΓ

Figure 2: Sketch of the tensor product basis and
some of the degrees of freedom for triangular
�nite elements of order 2 and in�nite elements
of order 3.

of this space is composed of boundary functions,
which are the traces of the basis functions of the
interior discretization. The second part consists
of basis functions in the normal coordinate

φj(ξ) = exp(−ξ) pj(ξ) ,

for certain polynomials pj of degree j (cf. Fig-
ure 3). These polynomials are closely linked to
the Laguerre polynomials which form a complete
orthogonal system for a weighted L2-space on
R>0.

Desirable properties of the basis functions
φj include that they result in sparse, well-condi-
tioned discretization matrices. Moreover it can

be shown that they approximate the normal com-
ponents of the solution super-algebraically with
respect to the number of basis functions. They
are simple to evaluate and can be integrated
numerically. Coupling the interior and exterior
problem works in a straightforward way.
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Figure 3: The �rst few basis functions φj . The
basis function φ0 couples with the interior and
corresponds to the degrees of freedom on the
interface Γ in Figure 2, while the remaining basis
functions live purely in the exterior.

4 Time integration

After spacial discretization the resulting semi-
discrete system in time is discretized using im-
plicit time-stepping methods. A possible ex-
tension of our method would be the use of ex-
plicit time-stepping schemes to improve compu-
tational e�ciency. To this end, a discontinuous
Galerkin approach for the interior and interface
basis functions can be used.
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